Wind Speed and Power Prediction Using Artificial Neural Networks
نویسنده
چکیده
Short-term wind prediction over different time steps is vital for wind farms in operation for various applications. Considering the complexity of atmospheric processes governing wind, time series models are preferred over physical models for wind prediction. Artificial neural networks (ANNs), which perform a non-linear mapping between inputs and outputs, provide an alternative approach for wind prediction. Two popular ANN types, Multi layer feed forward networks and Elman networks are developed for simulating wind speed and power for a typical Indian wind farm for different prediction lengths. The performance of the models is compared based on the RMS errors of the wind speed and power.
منابع مشابه
Hourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks
In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...
متن کاملShort and Mid-Term Wind Power Plants Forecasting With ANN
In recent years, wind energy has a remarkable growth in the world, but one of the important problems of power generated from wind is its uncertainty and corresponding power. For solving this problem, some approaches have been presented. Recently, the Artificial Neural Networks (ANN) as a heuristic method has more applications for this propose. In this paper, short-term (1 hour) and mid-term (24...
متن کاملShort and Mid-Term Wind Power Plants Forecasting With ANN
In recent years, wind energy has a remarkable growth in the world, but one of the important problems of power generated from wind is its uncertainty and corresponding power. For solving this problem, some approaches have been presented. Recently, the Artificial Neural Networks (ANN) as a heuristic method has more applications for this propose. In this paper, short-term (1 hour) and mid-term (24...
متن کاملApplication of artificial neural networks on drought prediction in Yazd (Central Iran)
In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...
متن کاملPrediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کامل